Contractions of Banach, Tarafdar, Meir–Keeler, Ćirić–Jachymski–Matkowski and Suzuki types and fixed points in uniform spaces with generalized pseudodistances
نویسندگان
چکیده
منابع مشابه
Fixed points for E-asymptotic contractions and Boyd-Wong type E-contractions in uniform spaces
In this paper we discuss on the fixed points of asymptotic contractions and Boyd-Wong type contractions in uniform spaces equipped with an E-distance. A new version ofKirk's fixed point theorem is given for asymptotic contractions and Boyd-Wong type contractions is investigated in uniform spaces.
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کاملApproximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
متن کاملfixed points for e-asymptotic contractions and boyd-wong type e-contractions in uniform spaces
in this paper we discuss on the fixed points of asymptotic contractions and boyd-wong type contractions in uniform spaces equipped with an e-distance. a new version ofkirk's fixed point theorem is given for asymptotic contractions and boyd-wong type contractions is investigated in uniform spaces.
متن کاملSome Fixed Point Results for the Generalized $F$-suzuki Type Contractions in $b$-metric Spaces
Compared with the previous work, the aim of this paper is to introduce the more general concept of the generalized $F$-Suzuki type contraction mappings in $b$-metric spaces, and to establish some fixed point theorems in the setting of $b$-metric spaces. Our main results unify, complement and generalize the previous works in the existing literature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.03.030